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damage. A clear understanding of these mechanisms will al-
low for appropriate probiotic strain selection for specific ap-
plications and may uncover novel probiotic functions. The 
goal of this systematic review was to explore probiotic 
modes of action focusing on how gut microbes influence the 
host.   Copyright © 2012 S. Karger AG, Basel

  Introduction

  According to the Food and Agriculture Organization 
of the United Nations and the World Health Organiza-
tion  [1] , probiotics are live microorganisms that confer a 
health benefit to the host when administered in adequate 
amounts. In particular, strains belonging to  Bifidobacte-
rium  and  Lactobacillus , which are the predominant and 
subdominant groups of the gastrointestinal microbiota, 
respectively  [2] , are the most widely used probiotic bacte-
ria and are included in many functional foods and di-
etary supplements  [3–5] .  Saccharomyces boulardii  yeast 
has also been shown to have health benefits  [6] . After a 
long history of safe use of probiotics in fermented dairy 
products and an increased recognition of their beneficial 
effects on human health  [7] , the food industry has be-
come increasingly interested in these types of microor-
ganisms. Often the criteria for the selection of probiotics 
include the tolerance to gastrointestinal conditions (gas-
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  Abstract

  Probiotics are live microorganisms that provide health ben-
efits to the host when ingested in adequate amounts. The 
strains most frequently used as probiotics include lactic acid 
bacteria and bifidobacteria. Probiotics have demonstrated 
significant potential as therapeutic options for a variety of 
diseases, but the mechanisms responsible for these effects 
have not been fully elucidated yet. Several important mech-
anisms underlying the antagonistic effects of probiotics on 
various microorganisms include the following: modification 
of the gut microbiota, competitive adherence to the mucosa 
and epithelium, strengthening of the gut epithelial barrier 
and modulation of the immune system to convey an advan-
tage to the host. Accumulating evidence demonstrates that 
probiotics communicate with the host by pattern recogni-
tion receptors, such as toll-like receptors and nucleotide-
binding oligomerization domain-containing protein-like re-
ceptors, which modulate key signaling pathways, such as 
nuclear factor- � B and mitogen-activated protein kinase, to 
enhance or suppress activation and influence downstream 
pathways. This recognition is crucial for eliciting measured 
antimicrobial responses with minimal inflammatory tissue 
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tric acid and bile), ability to adhere to the gastrointestinal 
mucosa and competitive exclusion of pathogens [8, 9]. 
The mechanisms underlying the beneficial effects of pro-
biotics are largely unknown but are likely to be multifac-
torial. Several mechanisms related to the antagonistic ef-
fects of probiotics on various microorganisms include the 
following mechanisms: secretion of antimicrobial sub-
stances, competitive adherence to the mucosa and epithe-
lium, strengthening of the gut epithelial barrier and mod-
ulation of the immune system  [10] .

  The results of evidence-based analyses from human 
studies and animal models have shown the clinical po-
tential of probiotics against many diseases  [11] . Probiotics 
have been reported to suppress diarrhea  [12] , alleviate 
lactose intolerance  [13]  and postoperative complications 
 [14] , exhibit antimicrobial  [15]  and anti-colorectal cancer 
activities  [16, 17] , reduce irritable bowel symptoms  [18]  
and prevent inflammatory bowel disease  [19] . However, 
generalizations concerning the potential health benefits 
of probiotics should not be made because probiotic effects 
tend to be strain specific. Thus, the health benefit attrib-
uted to one strain is not necessarily applicable to another 
strain even within one species  [20] . 

  In the present study, we sought to conduct a system-
atic review on the mechanisms of action of probiotic 
strains. Using the following equation: ‘epithelial barrier’
[All Fields] OR ‘antimicrobial substances’[All Fields] OR 
‘bacteriocins’[All Fields] OR ‘BIF’[All Fields] OR ‘adhe-
sion’[All Fields] OR ‘competitive exclusion’[All Fields] 
OR ‘defensins’[All Fields] OR ‘mucins’[All Fields] OR 
‘bacterial adhesins’ [All Fields] OR ‘antifungals’[All 
Fields] OR ‘intestinal microbiota’[All Fields] OR ‘fatty 
acids’[All Fields] OR ‘mechanisms’[All Fields] OR 
‘TLR2’[All Fields] OR ‘TLR4’[All Fields] OR ‘TLR9’[All 
Fields] OR ‘toll-like receptor’[All Fields] OR ‘NOD1’[All 
Fields] OR ‘NOD2’ [All Fields] OR ‘inflammasome’[All 
Fields] OR ‘NLRP3’ [All Fields] AND ‘probiotics’[MeSH], 
we have selected 165 relevant articles of 1,731 articles pub-
lished until June 25, 2012, from the PubMed and SCO-
PUS databases. 

  Mechanisms of Action of Probiotics

  Major probiotic mechanisms of action include en-
hancement of the epithelial barrier, increased adhesion to 
intestinal mucosa, and concomitant inhibition of patho-
gen adhesion, competitive exclusion of pathogenic mi-
croorganisms, production of anti-microorganism sub-
stances and modulation of the immune system ( fig. 1 ).

  Enhancement of the Epithelial Barrier
  The intestinal epithelium is in permanent contact with 

luminal contents and the variable, dynamic enteric flora. 
The intestinal barrier is a major defense mechanism used 
to maintain epithelial integrity and to protect the organ-
ism from the environment. Defenses of the intestinal bar-
rier consist of the mucous layer, antimicrobial peptides, 
secretory IgA and the epithelial junction adhesion com-
plex  [21] . Once this barrier function is disrupted, bacte-
rial and food antigens can reach the submucosa and can 
induce inflammatory responses, which may result in in-
testinal disorders, such as inflammatory bowel disease 
 [22–24] . Consumption of non-pathogenic bacteria can 
contribute to intestinal barrier function, and probiotic 
bacteria have been extensively studied for their involve-
ment in the maintenance of this barrier. However, the 
mechanisms by which probiotics enhance intestinal bar-
rier function are not fully understood. 

  Several studies have indicated that enhancing the ex-
pression of genes involved in tight junction signaling is a 
possible mechanism to reinforce intestinal barrier integ-
rity  [25] . For instance, lactobacilli modulate the regula-
tion of several genes encoding adherence junction pro-
teins, such as E-cadherin and  � -catenin, in a T84 cell bar-
rier model. Moreover, incubation of intestinal cells with 
lactobacilli differentially influences the phosphorylation 
of adherence junction proteins and the abundance of pro-
tein kinase C (PKC) isoforms, such as PKC � , thereby pos-
itively modulating epithelial barrier function  [26] . 

  Recent data have indicated that probiotics may initiate 
repair of the barrier function after damage.  Escherichia 
coli  Nissle 1917 (EcN1917) not only prevents the disrup-
tion of the mucosal barrier by enteropathogenic  E. coli , 
but it even restores mucosal integrity in T84 and Caco-2 
cells. This effect is mediated by the enhanced expression 
and redistribution of tight junction proteins of the zonu-
la occludens (ZO-2) and PKC resulting in the reconstruc-
tion of the tight junction complex  [27, 28] . Similarly,  Lac-
tobacillus casei  DN-114001  [29]  and VSL3 (a mixture of 
pre- and probiotics)  [30]  are capable of sustaining the in-
testinal barrier function by similar mechanisms. A recent 
paper has reported that VSL3 protects the epithelial bar-
rier and increases tight junction protein expression in 
vivo and in vitro by activating the p38 and extracellular 
regulated kinase signaling pathways  [31] .

  A link between altered levels of pro-inflammatory cy-
tokines and intestinal permeability has been described in 
a number of intestinal diseases  [32] . Using probiotics, the 
prevention of cytokine-induced epithelial damage, which 
is characteristic of inflammatory bowel disease  [24] , may 
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also contribute to the reinforcement of the mucosal bar-
rier. Two isolated and purified peptides secreted by  Lac-
tobacillus rhamnosus  GG (LGG), which are designated 
p40 and p75, have recently been demonstrated to prevent 
cytokine-induced cell apoptosis by activating the anti-
apoptotic protein kinase B (PKB/Akt) in a phosphatidyl 
inositol-3 � -kinase-dependent pathway and by inhibiting 
the pro-apoptotic p38/mitogen-activated protein kinase 
(MAPK)  [33, 34] . The evidence that p40 and p75 are re-
sponsible for the observed effects is derived from the ob-
servation that the anti-apoptotic function is abolished 
when p40- and p75-specific antibodies are added in vitro 
to murine and human epithelial cells or to colon explants 
derived from mice  [34] . Other low-molecular-weight 
(LMW) peptides secreted from LGG induce expression of 
heat shock proteins and activate MAPKs  [35] .

  Mucin glycoproteins (mucins) are major macromolec-
ular constituents of epithelial mucus and have long been 
implicated in health and disease. Probiotics may promote 
mucous secretion as one mechanism to improve barrier 

function and the exclusion of pathogens. Several  Lacto-
bacillus  species increase mucin expression in human in-
testinal cell lines. However, this protective effect is de-
pendent on  Lactobacillus  adhesion to the cell monolayer, 
which likely does not occur in vivo  [36, 37] . Conversely, 
another group has shown that  Lactobacillus acidophilus 
 A4 cell extract is sufficient to increase  MUC2  expression 
in HT29 cells independent of attachment  [38] . Addition-
ally, VSL3, which contains some  Lactobacillus  species, in-
creases the expression of  MUC2 ,  MUC3  and  MUC5AC  in 
HT29 cells  [30] . In vivo studies are less consistent because 
only a few have been performed. Mice given VSL3 daily 
for 14 days do not exhibit altered mucin expression or 
mucous layer thickness  [39] . Conversely, rats given VSL3 
at a similar daily dose for 7 days have a 60-fold increase 
in  MUC2  expression and a concomitant increase in mu-
cin secretion  [40] . Therefore, mucous production may be 
increased by probiotics in vivo, but further studies are 
needed to make a conclusive statement.

(6) 

  Fig. 1.  Major mechanisms of action of pro-
biotics. 
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  Increased Adhesion to Intestinal Mucosa
  Adhesion to intestinal mucosa is regarded as a prereq-

uisite for colonization and is important for the interac-
tion between probiotic strains and the host  [41–43] . Ad-
hesion of probiotics to the intestinal mucosa is also im-
portant for modulation of the immune system  [43, 44]  
and antagonism against pathogens  [45] .

  Thus, adhesion has been one of the main selection cri-
teria for new probiotic strains  [41, 46–48]  and has been 
related to certain beneficial effects of probiotics  [49] . Lac-
tic acid bacteria (LABs) display various surface determi-
nants that are involved in their interaction with intestinal 
epithelial cells (IECs) and mucus. IECs secrete mucin, 
which is a complex glycoprotein mixture that is the prin-
cipal component of mucous, thereby preventing the ad-
hesion of pathogenic bacteria  [47, 50] . Additionally, lip-
ids, free proteins, immunoglobulins and salts are present 
in mucous gel  [51] . This specific interaction has indicated 
a possible association between the surface proteins of 
probiotic bacteria and the competitive exclusion of patho-
gens from the mucus  [52–54] . As mentioned above, sev-
eral  Lactobacillus  proteins have been shown to promote 
mucous adhesion  [54] , and bacteria display surface ad-
hesins that mediate attachment to the mucous layer  [55] . 
This process is mainly mediated by proteins, although 
saccharide moieties and lipoteichoic acids have also been 
implicated  [56] . The most studied example of mucus-tar-
geting bacterial adhesins is MUB (mucus-binding pro-
tein) produced by  Lactobacillus reuteri   [55, 57] . The pro-
teins playing a role in the mucous adhesion phenotype of 
lactobacilli are mainly secreted and surface-associated 
proteins, which are either anchored to the membrane 
through a lipid moiety or embedded in the cell wall  [58–
61] . The involvement of surface proteins in the interac-
tion with human plasminogen or enterocytes has been 
reported in  Bifidobacterium animalis  subsp.  lactis  and  Bi-
fidobacterium bifidum , respectively. Under certain cir-
cumstances, these proteins may play a role in facilitating 
the colonization of the human gut through degradation 
of the extracellular matrix of cells or by facilitating close 
contact with the epithelium  [62–66] . MapA (mucous ad-
hesion-promoting protein) has been reported to mediate 
the binding of  L. reuteri  and  L. fermentum  to mucus  [52] . 
Probiotics, such as  L. plantarum , have been reported to 
induce MUC2 and MUC3 mucins and to inhibit the ad-
herence of enteropathogenic  E. coli . These observations 
indicate that enhanced mucous layers and glycocalyx 
overlying the intestinal epithelium as well as the occupa-
tion of microbial binding sites by  Lactobacillus  spp. pro-
vide protection against invasion by pathogens  [45, 67, 68] . 

Collado et al.  [69]  evaluated the adhesion of  Bifidobacte-
rium longum  and  Bifidobacterium catenulatum  strains to 
human intestinal mucus and compared the results to 
those of control experiments that were run with the orig-
inal acid-sensitive strains. They reported that in half of 
the 4 studied cases, the acid-resistant derivative shows a 
greater ability to adhere to human intestinal mucus than 
the original strain. The ability of bifidobacteria to inhib-
it pathogen adhesion to mucus is not generally improved 
by the acquisition of acid resistance. Overall, the induc-
tion of acid resistance in bifidobacteria may be a strate-
gy for selecting strains with enhanced stability and im-
proved surface properties that favor their potential func-
tionality as probiotics against specific pathogens.

  The mixture of probiotics and VSL3 has been reported 
to increase the synthesis of cell surface mucins and to 
modulate mucin gene expression in a manner dependent 
on the adhesion of bacterial cells to the intestinal epithe-
lium  [40] .

  Probiotics also cause qualitative alterations in intesti-
nal mucins that prevent pathogen binding  [68] . The bac-
terial component involved in the adhesion of the LB and 
BG2FO4  L. acidophilus  strains is protease resistant and is 
associated with the bacterial surface  [70–72] . Interesting-
ly, the bacterial component is also degraded into an anti-
microbial peptide, which lends anti-pathogenic proper-
ties to the host and provides an example of how large
surface proteins may exhibit evolutionarily beneficial 
pleiotropic effects  [73] .

  Probiotic strains can also induce the release of defen-
sins from epithelial cells. These small peptides/proteins 
are active against bacteria, fungi and viruses. Moreover, 
these small peptides/proteins stabilize the gut barrier 
function  [74] . Observations have indicated that in re-
sponse to attack by pathogenic bacteria, the host engages 
its first line of chemical defense by increasing the produc-
tion of antimicrobial proteins (AMPs), such as  � - and  � -
defensins, cathelicidins, C-type lectins and ribonucleases 
 [75–80] . Many AMPs are enzymes that kill bacteria by 
carrying out an enzymatic attack on cell wall structures 
and/or non-enzymatic disruption of the bacterial mem-
brane. Enzymes expressed by Paneth cells attack the bac-
terial membranes. Lysozyme hydrolyzes the glycosidic 
linkage of wall peptidoglycan  [81]  and phospholipase A 2  
bacterial membrane phospholipids  [82] . Defensins com-
prise a major family of membrane-disrupting peptides in 
vertebrates. The interaction is non-specific and mainly 
by binding to anionic phospholipid groups of the mem-
brane surface through electrostatic interactions. This in-
teraction creates defensin pores in the bacterial mem-
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brane that disrupt membrane integrity and promote lysis 
of microorganisms  [83] . Cathelicidins are usually cation-
ic,  � -helical peptides that bind to bacterial membranes 
through electrostatic interactions and, like the defensins, 
induce membrane disruption  [84] .

  The microbial adhesion process of LAB also includes 
passive forces, electrostatic interactions, hydrophobic in-
teractions, steric forces, lipoteichoic acids and specific 
structures, such as external appendages covered by lec-
tins. A wide variety of molecules mediating the adhesion 
of pathogenic bacteria has been characterized. However, 
the understanding of the factors that mediate adhesion 
for  Lactobacillus  is extremely limited  [85–87] . Further 
studies are needed for the identification and analysis of 
the functional significance of various components of mu-
cous layers as well as the complex interactions of mucous 
layers, microbiota (including probiotics) and epithelial 
cells with underlying innate and adaptive immune sys-
tems  [68] .

  Competitive Exclusion of Pathogenic Microorganisms
  In a report addressing the total exclusion of  Salmo-

nella typhimurium  from maggots of blowflies published 
in 1969, Greenberg  [88]  first used the ‘competitive exclu-
sion’ term for the scenario in which one species of bacte-
ria more vigorously competes for receptor sites in the in-
testinal tract than another species. The mechanisms used 
by one species of bacteria to exclude or reduce the growth 
of another species are varied, including the following 
mechanisms: creation of a hostile microecology, elimina-
tion of available bacterial receptor sites, production and 
secretion of antimicrobial substances and selective me-
tabolites, and competitive depletion of essential nutrients 
 [89] .

  Specific adhesiveness properties due to the interaction 
between surface proteins and mucins may inhibit the col-
onization of pathogenic bacteria and are a result of an-
tagonistic activity by some strains of probiotics against 
adhesion of gastrointestinal pathogens  [90] . Lactobacilli 
and bifidobacteria have been shown to inhibit a broad 
range of pathogens, including  E. coli ,  Salmonella ,  Helico-
bacter pylori, Listeria monocytogenes  and  Rotavirus   [91–
97] . Exclusion is the result of different mechanisms and 
properties of probiotics to inhibit pathogen adhesion, in-
cluding the production of substances and the stimulation 
of IECs. Competitive exclusion by intestinal bacteria is 
based on a bacterium-to-bacterium interaction mediated 
by competition for available nutrients and for mucosal 
adhesion sites. To gain a competitive advantage, bacteria 
can also modify their environment to make it less suitable 

for their competitors. The production of antimicrobial 
substances, such as lactic and acetic acid, is one example 
of this type of environmental modification  [98] . Some 
lactobacilli and bifidobacteria share carbohydrate-bind-
ing specificities with some enteropathogens  [99, 100] , 
which makes it possible for the strains to compete with 
specific pathogens for the receptor sites on host cells  [101] . 
In general, probiotic strains are able to inhibit the attach-
ment of pathogenic bacteria by means of steric hindrance 
at enterocyte pathogen receptors  [102] .

  The effect of probiotic bacteria on the competitive ex-
clusion of pathogens has been demonstrated using hu-
man mucosal material in vitro  [45, 103]  as well as chicken 
 [104]  and pig mucosal material in vivo  [105] . Hirano et al. 
 [45]  showed that  L. rhamnosus,  a strongly adhering strain, 
is capable of inhibiting the internalization of EHEC (en-
terohemorrhagic  E. coli ) in a human intestinal cell line. 

  Production of Antimicrobial Substances
  One of the proposed mechanisms involved in the 

health benefits afforded by probiotics includes the forma-
tion of LMW compounds ( ! 1,000 Da), such as organic 
acids, and the production of antibacterial substances 
termed bacteriocins ( 1 1,000 Da).

  Organic acids, in particular acetic acid and lactic acid, 
have a strong inhibitory effect against Gram-negative 
bacteria, and they have been considered the main antimi-
crobial compounds responsible for the inhibitory activity 
of probiotics against pathogens  [106–108] . The undissoci-
ated form of the organic acid enters the bacterial cell and 
dissociates inside its cytoplasm. The eventual lowering of 
the intracellular pH or the intracellular accumulation of 
the ionized form of the organic acid can lead to the death 
of the pathogen  [109, 110] .

  Many LAB produce antibacterial peptides, including 
bacteriocins and small AMPs. Bacteriocins produced by 
Gram-positive bacteria (usually LAB, including lactacin 
B from  L. acidophilus , plantaricin from  L. plantarum  and 
nisin from  Lactococcus lactis ) have a narrow activity 
spectrum and act only against closely related bacteria, but 
some bacteriocins are also active against food-borne 
pathogens  [111] . The common mechanisms of bacterio-
cin-mediated killing include the destruction of target 
cells by pore formation and/or inhibition of cell wall syn-
thesis  [112] . For example, nisin forms a complex with the 
ultimate cell wall precursor, lipid II, thereby inhibiting 
cell wall biosynthesis of mainly spore-forming bacilli. 
Subsequently, the complex aggregates and incorporates 
peptides to form a pore in the bacterial membrane  [113] . 
Several studies have revealed that bacteriocin production 
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confers producing strains with a competitive advantage 
within complex microbial environments as a conse-
quence of their associated antimicrobial activity. Bacte-
riocin production may enable the establishment and in-
crease the prevalence of producing strains as well as en-
able the direct inhibition of pathogen growth within the 
gastrointestinal tract  [114] .

  Some specific antibacterial compounds have been de-
scribed for several  Bifidobacterium  strains, and a unique 
bacteriocin, bifidocin B, which is produced by  B. bifidum  
NCFB 1454 and is active towards Gram-positive bacteria, 
has been described as well  [108, 115] . Liévin et al.  [116]  
described a strong killing activity of two  Bifidobacterium  
strains against several pathogenic bacteria, including  Sal-
monella enterica  ser.  typhimurium  SL1344 and  E. coli  
C1845. This activity has been attributed to the produc-
tion of a potential LMW lipophilic molecule  [117] . In ad-
dition, an LMW protein termed BIF, which is produced 
by  B. longum  BL1928, is the only compound character-
ized thus far that is active against Gram-negative bacteria 
 [100, 118, 119] . This protein has no direct inhibitory or 
killing effect, but it inhibits the binding of  E. coli  to hu-
man epithelial cell lines. 

  Intestinal bacteria also produce a diverse array of 
health-promoting fatty acids. Indeed, certain strains of 
intestinal bifidobacteria and lactobacilli have been shown 
to produce conjugated linoleic acid (CLA), a potent anti-
carcinogenic agent  [114, 120] . An anti-obesity effect of 
CLA-producing  L. plantarum  has been observed in diet-
induced obesity in mice  [121] . Recently, the ability to 
modulate the fatty acid composition of the liver and adi-
pose tissue of the host upon oral administration of CLA-
producing bifidobacteria and lactobacilli has been dem-
onstrated in a murine model  [114] . 

  Finally, probiotic bacteria are able to produce so-called 
de-conjugated bile acids, which are derivatives of bile 
salts. De-conjugated bile acids show a stronger antimi-
crobial activity compared to that of the bile salts synthe-
sized by the host organism. It remains to be elucidated 
how probiotics protect themselves from their own bacte-
ricidal metabolites or if they are resistant to de-conjugat-
ed bile acids at all  [122] .

  It is well known that some strains of probiotics pro-
duce metabolites that inhibit the growth of fungi and oth-
er species of bacteria  [123, 124] . Some researchers have 
reported that  Lactobacillus  can produce antifungal sub-
stances, such as benzoic acid, methylhydantoin, mevalo-
nolactone  [125, 126]  and short-chain fatty acids  [127] . 
Magnusson and Schnürer  [128]  discovered that  Lacto-
bacillus coryniformis  can produce proteinaceous com-

pounds exhibiting antifungal properties, and Rouse et al.  
 [129]  characterized the antifungal peptides produced by 
LAB. These reports showed that the antifungal culture 
has the ability to prevent the growth of molds found in 
apple spoilage. Dal Bello et al.  [130]  reported the identifi-
cation and chemical characterization of four antifungal 
substances produced by  L. plantarum  FST 1.7, including 
lactic acid, phenyllactic acid and two cyclic dipeptides 
[cyclo( L -Leu- L -Pro) and cyclo( L -Phe- L -Pro)]. A study de-
scribed the antifungal culture as having the ability to re-
tard growth of  Fusarium culmorum  and  Fusarium gra-
minearum  found on breads. Another such study has re-
ported the production of the antifungal cyclic dipeptides, 
cyclo ( L -Phe- L -Pro) and cyclo( L -Phe-traps-4-OH- L -Pro), 
by LAB, which inhibit the growth of food- and feed-
borne filamentous fungi and yeasts in a dual-culture agar 
plate assay  [131] .

  Probiotics and the Immune System
  It is well known that probiotic bacteria can exert an 

immunomodulatory effect. These bacteria have the abil-
ity to interact with epithelial and dendritic cells (DCs) 
and with monocytes/macrophages and lymphocytes. The 
immune system can be divided between the innate and 
adaptive systems. The adaptive immune response de-
pends on B and T lymphocytes, which are specific for 
particular antigens. In contrast, the innate immune sys-
tem responds to common structures called pathogen-as-
sociated molecular patterns (PAMPs) shared by the vast 
majority of pathogens  [132] . The primary response to 
pathogens is triggered by pattern recognition receptors 
(PPRs), which bind PAMPs. The best-studied PPRs are 
toll-like receptors (TLRs). In addition, extracellular C-
type lectin receptors (CLRs) and intracellular nucleotide-
binding oligomerization domain-containing protein 
(NOD)-like receptors (NLRs) are known to transmit sig-
nals upon interaction with bacteria  [133] . 

  It is well established that the host cells that interact 
most extensively with probiotics are IECs. In addition, 
probiotics can encounter DCs, which have an important 
role in innate and adaptive immunity. Both IECs and 
DCs can interact with and respond to gut microorgan-
isms through their PPRs  [132, 133] .  Figure 2  shows a sum-
mary of how probiotics may interact and modulate the 
immune system

  TLRs and Probiotics
  TLRs are transmembrane proteins expressed on vari-

ous immune and non-immune cells, such as B cells, nat-
ural killer cells, DCs, macrophages, fibroblasts, epithelial 
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cells and endothelial cells. In mammals, the TLR family 
includes eleven proteins (TLR1–TLR11). However, there 
is a stop codon in the human TLR11 gene that results in 
a lack of production of human TLR11. Activation of TLRs 
occurs after binding of the ligand to extracellular leucine-
rich repeats. In humans, TLR1, TLR2, TLR4, TLR5, TLR6 
and TLR10 are outer membrane associated and primar-
ily respond to bacterial surface-associated PAMPs. TLR3, 

TLR7, TLR8 and TLR9 are found on the surface of endo-
somes where they respond primarily to nucleic acid-
based PAMPs from viruses and bacteria  [132] . Dimeriza-
tion of TLRs and the highly conserved toll-interleukin-1 
(IL-1) receptor (TIR) domains leads to the recruitment of 
adaptor molecules, such as myeloid differentiation pri-
mary response protein (MyD88), TIR domain-contain-
ing adaptor protein and TIR domain-containing adapter-

  Fig. 2.  Interaction of probiotics with the gut-associated immune 
system. ASC = Apoptosis-associated speck-like protein contain-
ing a CARD;  B. thetaiotamicron = Bacteroides thetaiotamicron ; 
CARD9 = caspase recruitment domain-containing protein 9; 
ERK = extracellular regulated kinase; IE-DAP = D-gamma-glu-
tamyl-meso-DAP; IKK = I � B kinase; IRAK4 = IL-1 receptor-as-

sociated kinase 4; JNK = Jun N-terminal kinase;   MDP = muramyl 
dipeptide; MKK = mitogen-activated kinase kinase; NEMO = 
NF- � B essential modulator; TAB1/2/3 = TAK binding proteins; 
TAK1 = ubiquitin-dependent kinase of MKK and IKK; TBK1 = 
serine/threonine-protein kinase 1; TRAF6 = TNF receptor-asso-
ciated factor 6; Ub = ubiquitin. 
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inducing interferon (IFN)- �  (TRIF), to initiate signaling 
activation. The TLR signaling pathway, except for TLR3, 
involves the recruitment of MyD88, which activates the 
MAPK and nuclear factor (NF)- � B signaling pathways 
 [133–135] . TLR3 utilizes the adaptor protein TRIF, lead-
ing to the expression of type 1 IFNs  [135] . Furthermore, 
TLR-mediated signaling has been shown to control DC 
maturation inducing the upregulation of various matura-
tion markers, such as CD80, CD83 and CD86, as well as 
the CCR7 chemokine receptor. Moreover, commensal 
and probiotic microorganisms can create an overall tol-
erant state mediated by the action of TLRs on DCs. It is 
clear that TLR9 signaling is essential to mediate the anti-
inflammatory effect of probiotics. However, different 
studies have implicated other TLRs, such as TLR3 and 
TLR7, in the tolerance induced by commensal and pro-
biotic bacteria. After activation by commensal and pro-
biotic microorganisms, DCs initiate an appropriate re-
sponse, such as the differentiation of Th 0  to T reg , which 
has an inhibitory effect on Th 1 , Th 2  and Th 17  inflamma-
tory responses. 

  It is well established that probiotics can suppress intes-
tinal inflammation via the downregulation of TLR ex-
pression, secretion of metabolites that may inhibit TNF-
 �  from entering blood mononuclear cells and inhibition 
of NF- � B signaling in enterocytes  [132] . 

  In this regard, cell wall components of lactobacilli can 
potentially signal through binding TLR2 in combination 
with TLR6. The diacylated membrane anchors of lipo-
proteins and lipoteichoic acids bind to TLR2 and TLR6, 
thereby promoting dimerization and MyD88-mediated 
activation of the canonical pathway of NF- � B  [135] . Stim-
ulation of TLR2 increases the production of cytokines, 
and TLR2 activation has an important role in enhancing 
transepithelial resistance to invading bacteria  [136] . 

  TLR2 recognizes peptidoglycan, which is the main 
component of Gram-positive bacteria, including the  Lac-
tobacillus  genus. Several studies have demonstrated that 
TLR2 is required for some  Lactobacillus  strains to exert 
their immunomodulatory effects. Vinderola et al.  [137]  
demonstrated that  L. casei  CRL 431 interacts with epithe-
lial cells through TLR2 and that the interaction between 
 L. casei  and gut-associated immune cells induces an in-
crease in the number of CD-206 and TLR2 receptors, 
mainly in the cells involved in the innate immune re-
sponse. 

  In addition, Shida et al.  [138]  showed that  L.   casei  in-
duces a high level of IL-12 production in both wild-type 
and TLR2-deficient macrophages, and that peptidogly-
can induces low levels of IL-12 production in wild-type 

macrophages and even lower levels in TLR2-deficient 
macrophages. They also suggested that the intact pepti-
doglycan of lactobacilli actually signals via TLR2 to in-
hibit IL-12 production. Although the recognition by 
TLR2 is essential, 12–48% of IL-12 production in TLR2-
deficient macrophages is inhibited by peptidoglycan, 
thus suggesting that other TLR2-independent mecha-
nisms may also be involved. Furthermore, it has been 
demonstrated that  Lactobacillus  strains, such as  L. rham-
nosus  GG (LGG) and  L. plantarum  BFE 1685, enhance 
TLR2 in vitro in experiments using human intestinal 
cells, and more recently,  L. casei  CRL 431 has been shown 
to exert a similar effect on healthy mice and mice infect-
ed with  S. enterica  serovar  typhimurium   [139, 140] . For 
instance, probiotic administration to healthy mice in-
creases expression of TLR2, TLR4 and TLR9, and it im-
proves the secretion of TNF- � , IFN- �  and IL-10 in Peyer’s 
patches  [140] . 

  Similarly, when porcine IECs encounter  Lactobacillus 
jensenii  TL2937, TLR2 may act synergistically and coop-
eratively with one or more PRRs, which may result in a 
coordinated sum of signals that induce the upregulation 
of several negative regulators of TLRs, including A20, 
Bcl-3 and MKP-1  [141] . 

  TLR2 also has an important role in the recognition of 
bifidobacteria. Hoarau et al.  [142]  reported that a fermen-
tation product from  Bifidobacterium breve  C50 can in-
duce maturation, high IL-10 production and prolonged 
survival of DCs via the TLR2 pathway. 

  Similarly, Zeuthen et al.  [143]  showed that TLR2–/– 
DCs produce more IL-2 and less IL-10 in response to bi-
fidobacteria, and they concluded that the immuno-in-
hibitory effect of bifidobacteria is dependent on TLR2. 

  Recently, Kailova et al.  [144]  reported that oral admin-
istration of  B. bifidum  OLB 6378 to rats with necrotizing 
enterocolitis (NEC) stimulates TLR2 expression in the 
ileal epithelium, enhances epithelial expression of COX-2 
and increases intestinal production of prostaglandin E 2 . 
Indeed, pretreatment of IEC-6 cells with the probiotic 
strain stimulates TLR2 and COX-2 expression and blocks 
cytokine-induced apoptosis. However, there is no evi-
dence of a clear link between TLR2 activation and the 
upregulation of COX-2.

  In contrast, it has been shown that the  L. reuteri  
strains DSM 17938 and ATCC PTA 4659 have a benefi-
cial effect on preventing NEC in rats. In response to the 
probiotic, mRNA expression of IL-6, and expression lev-
els of TNF- � , TLR4 and NF- � B are significantly down-
regulated, and mRNA levels of IL-10 are significantly
upregulated. Moreover,  L.   reuteri  treatment leads to de-
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creases in intestinal protein levels of TLR4, IL-1 �  and 
TNF- �  in newborn rats with NEC. Furthermore,  L. reu-
teri  significantly increases survival rate, reduces both the 
incidence and severity of NEC and decreases pro-inflam-
matory cytokine levels in parallel with inhibition of TLR4 
signaling via the NF- � B pathway. 

  Moreover, TLR4 has a significant role in the host
defense against  Salmonella  infection in vivo .  In healthy 
mice,  L. casei  CRL 431 activates this receptor and can be 
used as a surveillance mechanism against pathogenic 
bacteria  [140] . Activation of TLR4 leads to the induction 
of pro-inflammatory mediators, an increase in TLR2 ex-
pression, and a reduction in its own expression, which 
leads to the recruitment of inflammatory cells and the 
initiation of the appropriate responses in the spleen. Col-
lectively, these events allow for the control of bacterial 
replication  [140, 146, 147] . 

  Similarly, heat-inactivated LGG and  Lactobacillus del-
brueckii  subsp.  bulgaricus  can decrease TLR4 expression 
similar to lipopolysaccharide (LPS) after 12 h in human 
monocyte-derived DCs. Moreover, LGG downregulates 
p38 expression, and  L. delbrueckii  subsp . bulgaricus  re-
duces inhibitor protein  � B (I � B) expression. In addition, 
these probiotic strains can modify the immune response 
at the post-transcriptional level by modifying miRNA ex-
pression  [148] . 

  Another relevant TLR is TLR9, which recognizes bac-
terial CpG DNA and synthetic unmethylated CpG oligo-
nucleotide mimics (CpG-ODN). Unmethylated DNA 
fragments containing CpG motifs that are released from 
probiotics in vivo have the potential to mediate anti-in-
flammatory effects through TLR9 signaling at the epithe-
lial surface. It is known that  Lactobacillus  species differ 
in their C+G composition. Thus, the ability of different 
species to stimulate TLR9 is likely to be different  [135, 
149] . TLR9 activation through apical and basolateral sur-
faces activates different intracellular signaling pathways 
in polarized epithelial cells. Whereas basolateral TLR9 
triggers I � B �  degradation and NF- � B pathway activa-
tion, apical TLR9 induces cytoplasmic accumulation of 
ubiquitinated I � B and inhibition of NF- � B activation 
 [150] .

  Using polarized HT29 and T84 cell monolayers, Gha-
dimi et al.  [151]  showed that binding of natural com-
mensal-origin DNA to the apical TLR9 initiates an in-
tracellular signaling cascade in a specific manner that
is associated with the attenuation of TNF- � -induced
NF- � B activation and NF- � B-mediated IL-8 expression. 
When LGG DNA was apically applied, they showed a de-
tracted TNF- � -induced NF- � B activation by reduced 

I � B �  degradation and p38 MAPK phosphorylation, 
thereby indicating that intracellular chemical signals 
may coordinately regulate multiple properties of TLR9 
expression that are relevant in multicellular functional 
responses of TLR9 to bacterial DNA. They also showed 
that TLR9 silencing abolishes the inhibitory effect of nat-
ural commensal-origin DNA on TNF- � -induced IL-8 se-
cretion. 

  Similarly,  B. breve  (NumRes 204),  L. rhamnosus 
 (NumRes 1) and  L. casei  (DN-114 001) strains induce dif-
ferent cytokine production levels by human and mouse 
primary immune cells. It has been demonstrated that the 
 B. breve  strain induces lower levels of the pro-inflamma-
tory cytokine IFN- �  than  L. rhamnosus  and  L. casei . 
Moreover,  B. breve  and lactobacilli induce cytokines in a 
TLR9-dependent manner, and the lower inflammatory 
profile of  B. breve  is due to inhibitory effects of TLR2 
 [152] . 

  In addition, it has been shown that purified genomic 
DNA from  L. plantarum  (p-gDNA) does not substantial-
ly stimulate pro-inflammatory cytokines. However, p-
gDNA inhibits LPS-induced TNF- �  production by THP-
1 cells. Furthermore, p-gDNA reduces the expression of 
TLR2, TLR4 and TLR9, which induces the activation of 
NF- � B through the LPS signaling pathway, leading to the 
upregulation of inflammatory cytokines  [153, 154] . Pre-
treatment of p-gDNA inhibited the phosphorylation of 
MAPKs and NF- � B, and also inhibited LPS-induced 
TNF- �  production in subsequent LPS stimulation. In 
this regard,  L. plantarum  genomic DNA-mediated inhi-
bition of signaling and TNF- �  was accompanied by the 
suppression of TLR2, TLR4 and TLR9, as well as the in-
duction of IL-1 receptor-associated kinase M (a negative 
regulator of TLR)  [154] . 

  NLRs and Probiotics
  As mentioned before, there is another family of mem-

brane-bound receptors: NLRs. They are located in the cy-
toplasm and are important in tissues where TLRs are ex-
pressed at low levels. The most thoroughly characterized 
members are NOD1 and NOD2, but currently more than 
20 different NLRs have been identified  [155] . Unlike 
NOD1, which is ubiquitously expressed, the expression of 
NOD2 is restricted to DCs, macrophages, Paneth cells, 
intestinal cells, lung cells and oral epithelial cells, and it 
is expressed at low levels in T cells. NOD1 can sense pep-
tidoglycan moieties containing meso-diaminopimelic 
acid, which are associated with Gram-negative bacteria, 
but NOD2 senses muramyl dipeptide motifs, which can 
be found in a wide range of bacteria  [156] . Upon recogni-
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tion of their agonist, both NOD1 and NOD2 self-oligo-
merize to recruit and activate the adaptor protein RICK, 
a protein kinase that regulates CD95-mediated apoptosis, 
which is essential for the activation of NF- � B and MAPKs, 
resulting in the upregulation of transcription and pro-
duction of inflammatory mediators (e.g. cytokines, che-
moattractants, COX-2 and inducible nitric oxide syn-
thase)  [157] . 

  There are a few studies showing the effect of probiotics 
on NLR. However, Fernandez et al.  [158]  recently demon-
strated that the protective capacity of  L. salivarius  Ls33 
correlates with local IL-10 production, which is abolished 
in NOD2-deficient mice. Indeed, these authors showed 
that the anti-inflammatory effect of Ls33 is mediated via 
NOD2. 

  Another important pathway activated by NLRs in-
volves apoptosis-associated speck-like protein with cas-
pase recruitment to activated caspase 1, an adaptor pro-
tein which is necessary for the cleavage of pro-IL-1 �  and 
pro-IL-18 into their mature and biologically active forms. 
NLRs participate in the formation of inflammasomes, 
which leads to the activation of caspase-1. There are three 
principal inflammasomes named after the NLR involved 
as follows: NOD-like receptor family, pyrin domain con-
taining protein (NLRP) 1, NLRP3 and NLRC4. NLRP3 
detects LPS, muramyl dipeptide, bacterial RNA and viral 
RNA  [157] .

  The following two steps are required for the complete 
activation of the NLRP3 inflammasome: a priming step 
to induce transcription of NLRP3 mRNA and a sequen-
tial step to recognize various PAMPs and danger-associ-
ated molecular patterns by fully expressed NLRP3 itself 
 [159, 160] . With regard to probiotic mechanisms asso-
ciated with NLRP3, Tohno et al.  [161]  found that  L.
delbrueckii  subsp.  bulgaricus  NIAI B6 and  L. gasseri 
JCM1131 T  are able to enhance NLRP3 expression in the 
GALT of adult and newborn swine. Their results suggest-
ed that immunobiotic  Lactobacillus  strains directly pro-
mote NLRP3 expression via TLR and NOD-mediated 
signaling, resulting in the induction of appropriate 
NLRP3 activation in porcine GALT. Furthermore, their 
results indicated that NLRP3 expression is upregulated 
by TLR2, TLR9, NOD1 and NOD2 agonists in adult and 
newborn porcine GALT. It has been suggested that 
NLRP3 has an important role in the regulation of human 
intestinal inflammation, such as in Crohn’s disease  [162] , 
and that dysregulated NLRP3 expression results in the 
disruption of immune homeostasis associated with auto-
inflammatory disease in humans  [163] . Because the po-
tential expression level of NLRP3 is low in immune cells, 

induction of cellular NLRP3 expression itself is a first 
step to evoke the appropriate activation of the NLRP3-
mediating signaling pathway in order to respond to dan-
ger-associated molecular patterns and PAMP stimuli 
 [159, 160, 164, 165] .

  Conclusions

  Probiotics have considerable potential for preventive 
or therapeutic applications in various gastrointestinal 
disorders. However, it is important to note that many pro-
biotic health claims have not yet been substantiated by 
experimental evidence. In addition, the efficacy demon-
strated for one given bacterial strain cannot necessarily 
be transferred to other probiotic organisms. Moreover, 
the mechanisms underlying probiotic action have not yet 
been fully elucidated.

  This study reviewed the mechanisms of action of pro-
biotics. Several important mechanisms underlying the 
antagonistic effects of probiotics on various microorgan-
isms include the following: modification of the gut mi-
crobiota, competitive adherence to the mucosa and epi-
thelium, strengthening of the gut epithelial barrier and 
modulation of the immune system to convey an advan-
tage to the host. The recent characterization of the host 
families of pattern-recognition molecules, such as TLR 
and NOD-like receptors, as well as modulating key sig-
naling pathways, such as NF- � B and MAPK, with respect 
to their ability to enhance or suppress activation and in-
fluence downstream pathways will shed light onto the 
complex interplay of host-microbe interactions. Stimula-
tion of these receptors by commensal bacteria has a cru-
cial role to elicit measured antimicrobial responses with 
minimal inflammatory tissue damage.

  Future Perspectives

  In the present review, we provided an overview of the 
mechanisms of action of probiotics. It must be noted that 
many reported mechanisms of probiotic action are the 
results of in vitro experiments. Considerable effort has 
been invested in the development of methods enabling 
the in-depth analysis of the molecular mechanisms of 
probiotics. The complex and dynamic interactions that 
exist between the intestinal epithelium and bacteria on 
the luminal side as well as between the epithelium and the 
underlying immune system on the basolateral side must 
be reconciled in co-culture experiments with probiotics, 
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DCs and IECs as well as in 3D models. Other models in-
clude tissue explants, bioreactors and organoids. In vitro 
models have improved our current knowledge regarding 
specific probiotic modes of action. However, a number of 
limitations have to be taken into account. For example, 
results obtained with different IECs have to be carefully 
interpreted because not all cell lines share the same char-
acteristics. It should also be noted that culture conditions 
may influence the expression of certain molecular char-
acteristics.

  The molecular elucidation of probiotic action in vivo 
will help to identify true probiotics and to select the most 
suitable ones for the prevention and/or treatment of par-
ticular diseases. It is important to note that results ob-

tained in animal models cannot be directly transferred to 
humans. The physiology of animals differs considerably 
from that of humans, but this disadvantage is outweighed 
by the possibility of using animals with virtually identical 
genetic backgrounds, such as human microbiota-associ-
ated animals.

  The quest for a better understanding of how probiotics 
operate has catalyzed an enormous interest in the mo-
lecular processes underlying host-microbe interactions. 
Gaining insight into the mechanisms of probiotic action 
may not only help to improve the credibility of the probi-
otic concept but also to foster the development of novel 
strategies for the treatment or prevention of gastrointes-
tinal and autoimmune diseases.
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