Laura Gómez-Herrera, Yu Zhao, Ioar Rivas, Elisenda Eixarch, Carla Domínguez-Gallardo, Toni Galmes, Marta Muniesa, Maria Julia Zanini, Alan Domínguez, Marta Cirach, Mark Nieuwenhuijsen, Xavier Basagaña, Xavier Querol, Maria Foraster, Mariona Bustamante, Jesus Pujol, Mireia Gascon, Elisa Llurba, María Dolores Gómez-Roig, Payam Dadvand, Jordi Sunyer
The Lancet Planetary Health, 2025. https://doi.org/10.1016/S2542-5196(25)00093-2
New article of interest of the RICORS-SAMID network
The groups leaded by Dr. LLurba and Dr. Gómez-Roig (RD24/0013/0001 and RD21/0013/0004, respectively) have collaborated on this study published in The Lancet Planetary Health journal. The main conclusion of this publication is that fetuses with greater exposure to certain atmospheric pollutants show changes in the measurements of some brain structures, especially during the second and third trimesters of pregnancy.
Background
There is a scarcity of evidence of the influence of exposure to air pollution during pregnancy on the human fetal brain characterised prenatally. We aimed to evaluate the association of exposure to air pollution with fetal brain morphology.
Methods
In this prospective cohort study, we used data from the Barcelona Life Study Cohort, Spain, which recruited 1080 pregnant women at 8–14 weeks of gestation between Oct 16, 2018, and April 14, 2021, from three major university hospitals in Barcelona. Eligible participants were aged 18–45 years, had a singleton pregnancy, and had a fetus without major congenital anomalies. Third-trimester transvaginal neurosonography was applied to evaluate fetal brain morphological development. We integrated comprehensive data on time–activity patterns with land use regression, dispersion, and hybrid models to estimate exposure to NO2, PM2·5, and black carbon at home, workplace, and commuting routes during pregnancy until the neurosonography date. Single-pollutant linear mixed regression models and multipollutant ridge regression models were applied to estimate the associations between air pollutants and fetal brain outcomes, controlled for confounders. Distributed lag linear models were used to identify the vulnerable windows.
Findings
Among 1080 participants recruited at baseline, 954 attended the follow-up for the neurosonographic examination, 754 of whom were included in this study. In single-pollutant models, we found that prenatal exposure to NO2, PM2·5, and black carbon was associated with a wider anterior horn of lateral ventricles, wider cisterna magna, and larger cerebellar vermis. We also observed that higher exposure to black carbon was related to a shallower Sylvian fissure. No clear pattern or associations were observed between air pollution and other structures of brain morphology. Multipollutant models showed that these associations with black carbon remained significant, whereas associations with PM2·5 and NO2 lost significance for some indicators. A potential vulnerability window in mid-to-late pregnancy was identified for these associations.
Interpretation
Exposure to air pollution might affect brain morphological development as early as the fetal stage. Our findings could have important policy implications as they highlight the need to mitigate exposure of pregnant individuals to air pollution in urban areas to protect fetal brain development.